19. C. A. R. Baxter and D. A. Whiting, J. Chem. Soc., C, 1174 (1963).

20. V. G. Kharchenko, E. N. Lyutaya, L. D. Berseneva, and L. V. Lipatova, USSR Inventor's Certificate No. 509594; Byul. Izobret., No. 13 (1976).

SYNTHESIS OF SOME 4-THIAZOLIDONE DERIVATIVES

FROM 4-(CYCLO-3-ALKENYL) THIOSEMICARBAZONES

I. V. Smolanka, N. P. Man'o, and T. A. Krasnitskaya

The reaction of 4-(cyclo-3-pentenyl)- and 4-(cyclo-3-hexenyl)thiosemicarbazones with chloroacetic acid gave 2-hydrazono derivatives of 3-cyclo-pentenyl(cyclohexenyl)thioazolid-4-one, the condensation of which with aromatic aldehydes gave 5-benzylidene derivatives. Representatives of 4-thiazolidone with a carboxy group in the 5 position were synthesized by condensation of the same thiosemicarbazones with maleic anhydride. Some of the substances obtained have bactericidal activity.

Pseudothiohydantoin derivatives that have a broad range of antimicrobial and pharmacological activity because of their structural similarity to a number of the most important antibiotics have been obtained by condensation of thiosemicarbazones with α -halo carboxylic acids [1-4]. 4-Thiazolidine derivatives that contain a carboxymethyl group in the 5 position have been obtained by the reaction of thiosemicarbazones with maleic anhydride [5, 6]. It is also known [2, 7] that the introduction of alkyl or aryl substituents in molecules of medicinals is often accompanied by a significant increase in their physiological effect.

In this connection, we synthesized pseudothiohydantoin derivatives (IIa-g) that contain a cycloalkenyl grouping by condensation of 4-(cyclo-3-pentenyl)- and 4-(cyclo-3-hexenyl)thiosemicarbazones (I) with chloroacetic acid and maleic anhydride.

5-Benzylidene derivatives (IIIa-c), which were also obtained in one step by condensation of thiosemicarbazone Ia with chloroacetic acid and aromatic aldehydes, were synthesized by condensation of derivatives II with aromatic aldehydes, respectively.

I R¹=cyclo-3-pentenyl or cyclo-3-hexenyl; ; II a R¹=cyclo-3-pentenyl R²=R³=H; b R¹=cyclo-3-pentenyl R²=OH-2, R³=H; c R¹=cyclo-3-pentenyl R²=H, R³=CH₂COOH; d R¹=cyclo-3-pentenyl, R²=OH-2, R³=CH₂COOH; e R¹=cyclo-3-pentenyl R²=NO₂-3, R³=CH₂COOH; f R¹=cyclo-3-pentenyl, R²=OH-2, R³=H; g R¹=cyclo-3-hexenyl R²=N(CH₃)₂-4, R³=H; III R¹=cyclo-3-pentenyl, aR²=R⁴=H; b R²=H, R⁴=OH-2; c R²=OH-2, R⁴=H

The identical character of III obtained by the different variants is confirmed by data from their IR spectra. Thus absorption bands at 670 (δ_{C-H} in the benzene ring), 760 (γ_{C-S-C}), 990 (δ_{C-H} in C=CH), 1330 and 1340 (δ_{C-OH}), 1400 (δ_{H} in C=CH), 1500 (aromatic ring), 1550 ($\gamma_{C=N}$), and 1580 cm⁻¹ (conjugated $\gamma_{C=C}$).

Compounds I have bactericidal activity. The preparations had a selective effect on microbes that use molecular oxygen for oxidative processes.

Uzhgorod State University, Uzhgorod 294005. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 5, pp. 627-628, May, 1981. Original article submitted April 8, 1980.

457

UDC 547.789.3

INDED I. ONGLACICITOLICO OI CHE DYNCHEOIZEU II ANU I.	FABLE 1	1. (Characteristics	of	the	Synthesized	ΪĪ	and	II
---	---------	------	-----------------	----	-----	-------------	----	-----	----

-		_									
Com - pound	mp,°C	R _f a	UV spectrum, λ _{max} , (log ε)	Foi	Found, %		Empirical	Calc., %			Yield,
				c	N	s	Iormula	с	N	s	
IIa	178	0,78 ^b	235 (3,93), 285 (4,30)	, 62,5	-	11,2	$C_{15}H_{15}N_{3}OS$	63,1		11,2	62
IIp	200—201	0,82°C	245 (3,98), 290 (4,41) 363 (4,48)	, 58,9	13,7	-	C ₁₅ H ₁₅ N ₃ O ₂ S	59,8	13,9		70
IIc IId	96—98 143—144	0,86 ^d 0,62 ^c	245 (4,20), 312 (4,35) 237 (4,17), 295 (4,30)	60,5 , 56,3	-	9,2 9,4	$\begin{array}{c} C_{17}H_{17}N_{3}O_{8}S\\ C_{17}H_{17}N_{3}O_{4}S \end{array}$	59,5 56,8		9,3 8,9	$52 \\ 61$
IIe	175—176	0,59 ^e	$\begin{bmatrix} 332 & (4,22) \\ 265 & (4,25), 285 & (4,77) \\ 305 & (4,28) \end{bmatrix}$, –	14,8	8,3	C ₁₇ H ₁₆ N ₄ O ₅ S		14,4	8,2	51
Ħ	167—169	0,72 ^f	245 (4,78), 290 (4,37)	, 61,1	12,9		$C_{16}H_{17}N_3O_2S$	60,9	13,0	—	69
Цg	152-153	0,90 ^d	238 (4,00), 310 (3,98) 350 (4,48) 390 (4,02)	, 63,1	-	9,4	$C_{18}H_{22}N_4OS$	62,97	—	9,3	48
IIIa	181—182	0,61 ^f	245 (4,26), 360 (4,44) 370 (4,46)	, 70,7	-	8,6	C ₂₂ H ₁₉ N ₃ OS	70,8		8,6	53
Пþ	178	0,66 ^f	245 (4,10), 295 (4,54)	, 68,8	10,6	_	$C_{22}H_{19}N_3O_2S$	67,9	10,8		64
ЗЦК	195—196	0,83 ^b	230 (4,36), 300 (4,52) 365 (4,56), 420 (3,00	, 68,2	10,5	-	$C_{22}H_{19}N_3O_2S$	67,9	10,8		54

^aThin-layer chromatography in ethanol-benzene. ^b1:1. ^c1:3. d1:4. ^e1:2. ^f4:1.

EXPERIMENTAL

The IR absorption spectra of KBr pellets of the compounds were recorded with a UR-10 spectrometer. The UV spectra of solutions in ethanol were recorded with an SF-4 spectro-photometer. Compounds I were obtained by the method in [8]. The characteristics of the compounds obtained are presented in Table 1.

4-Thiazolidones (IIa,b,f,g). An equimolar mixture (11 mmole) of the corresponding thiosemicarbazide I, chloroacetic acid, and anhydrous sodium acetate in glacial acetic acid was refluxed for 1 h, after which the precipitate was removed by filtration, washed with hot water, and recrystallized from aqueous pyridine.

5-Carboxymethyl-4-thiazolidones (IIc-e). An equimolar mixture (12 mmole) of the corresponding thiosemicarbazide I and maleic anhydride in 15 ml of glacial acetic acid was refluxed for 1 h, and the precipitate was removed by filtration and recrystallized from ethanol.

5-Benzylidene-4-thiazolidones (IIIa-c). An equimolar mixture 5 mmole) of II, benzaldehyde or salicylaldehyde, chloroacetic acid, and anhydrous sodium acetate in glacial acetic acid was heated for 1 h, after which the precipitate was removed by filtration and recrystallized from aqueous pyridine.

LITERATURE CITED

- 1. F. J. Wilson and R. J. Burus, J. Chem. Soc., <u>121</u>, 870 (1922).
- 2. E. V. Vladzimirskaya, Zh. Obshch. Khim., <u>28</u>, <u>150</u>5 (1958).
- 3. O. F. Pavlenko, Farm. Zh., <u>4</u>, 3 (1959).
- 4. N. M. Turkevich and E. V. Vladzimirskaya, Zh. Obshch. Khim., 24, 2010 (1954).
- 5. N. O. Saldabol and A. Ya. Medne, Izv. Akad. Nauk Latv. SSR, Ser. Khim., 465 (1964).
- 6. V. S. Misra and A. Saxena, J. Prakt. Chem., <u>36</u>, 260 (1967).
- 7. Ya. S. Frankevich, Farm. Zh., <u>3</u>, 11 (1967).
- 8. I. V. Smolanka and N. P. Man'o, Ukr. Khim. Zh., 35, 508 (1969).